Homework 7

Due November 15th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. The book is https://archive.org/details/ complex-variables-2ed-dover-1999-fisher/page/n23/mode/2up.

- Section 3.1 (page 179) \#5, 6
- Nonbook problems:

1. Show that if f is a polynomial with real coefficients, then roots of f are symmetric about the real axis.
2. For each of $f(z)=z^{9}+5 z^{2}+3$ and $f(z)=z^{7}+6 z^{3}+7$, find how many zeroes f has in the fourth quadrant and how many in the half plane $\{z: \operatorname{Re} z<0\}$. (This should be quick based on your work above.)
3. Pick one of the f 's above, and find $R>0$ such that you can use Rouché's theorem (as in Example 4) to determine how many zeroes f has in each of the zones $\{z:|z|<R\}$, $\{z: R<|z|<R+1\}$ and $\{z: R+1<|z|\}$.
4. Pick one of the f 's above and an $R>0$, make a sketch of the complex plane with the circles $\{z:|z|=R\}$ and $\{z:|z|=R+1\}$, and find how many zeroes of f lie in each of the twelve open regions bounded by those circles and the coordinate axes, and how many on each boundary segment between regions.

Hints: For nonbook 1, show and use $\overline{f(z)}=f(\bar{z})$. For nonbook 4, a good choice of f and R makes things easier; it is easiest if all zeroes fall within a single zone. Watch out for zeroes on the axes.

